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Abstract. Quantum field theories based on non-commutative space-time (NCQFT) have been extensively
studied recently. However no NCQFT model which can uniquely describe the strong and electroweak
interactions has been constructed. This prevents one to make a consistent and systematic study of non-
commutative space-time. In this work we construct a NCQFT model based on the trinification gauge
group SU(3)C × SU(3)L × SU(3)R. A unique feature of this model, that all matter fields (fermions and
Higgs bosons) are assigned to (anti-) fundamental representations of the factor SU(3) groups, allows
us to construct a NCQFT model for strong and electroweak interactions and their unification without
ambiguities. This model provides an example which allows one to make a consistent and systematic study of
non-commutative space-time phenomenology. We also comment on some related issues regarding extensions
to E6 and U(3)C × U(3)L × U(3)R models.

Non-commutative quantum field theory (NCQFT), based
on a modification of the space-time commutation rela-
tions, provides an alternative to ordinary quantum field
theory. A simple way to modify the space-time proper-
ties is to change the usual space-time coordinate x to a
non-commutative coordinate X̂ such that [1]

[X̂µ, X̂ν ] = iθµν , (1)

where θµν is a real anti-symmetric matrix. We will con-
sider the case where θµν is a constant and commutes with
X̂µ. NCQFT based on the above commutation relation
can easily be studied using the Weyl–Moyal correspon-
dence replacing the product of two fields A(X̂) and B(X̂)
with non-commutative coordinates by a product of the
same fields but an ordinary coordinate x through the star
“∗” product,

A(X̂)B(X̂) → A(x) ∗B(x) (2)

= Exp
[
i
1
2
θµν∂x,µ∂y,ν

]
A(x)B(y)|x=y.

Properties related to NCQFT have been studied exten-
sively recently [2–11,13,14]. NCQFT for a pure U(1)
group is easy to study. The related phenomenology has
been studied recently [2]. But it is more complicated for
non-abelian groups. Due to the nature of the “∗” product,
there are fundamental differences between ordinary and
non-commutative gauge theories and these cause many
difficulties in the construction of a unique and consistent
model for the strong and electroweak interactions based

on the SU(3)C × SU(2)L × U(1)Y gauge group [3–11,13,
14].

One of the main problems is that the SU(N) group
cannot be simply gauged with the “∗” product as will
be explained in the following. Another problem is that,
naively, the charges of any U(1) gauge group with the “∗”
product are quantized to only three possible values, 1, 0,
−1, which cannot accommodate all the hypercharges for
matter fields in the SM.

In this work we construct a NCQFT model based on
the trinification gauge group SU(3)C ×SU(3)L ×SU(3)R.
We show that the NCQFT model for the strong and elec-
troweak interactions and their unification can be consis-
tently constructed. This model therefore provides an ex-
ample which allows one to make a consistent and sys-
tematic study of the non-commutative space-time phe-
nomenology. With a non-commutative space-time there
are modifications to the fields compared with the ordi-
nary ones. We indicate the fields in NCQFT with a hat
and the ordinary ones without a hat. The definition of the
gauge transformation α̂ of a gauge field Âµ for SU(N) is
similar to the ordinary one, but with the usual product
replaced by the “∗” product. For example

δαφ̂ = iα̂ ∗ φ̂, (3)

where φ̂ is a fundamental representation of SU(N). We use
the notation Âµ = Âa

µT
a, α̂ = αaT a with T a being the

SU(N) generator normalized by Tr(T aT b) = δab/2. Due
to the non-commutativity of the space-time, two consec-
utive local transformations α̂ and β̂ of the type above,
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(δαδβ − δβδα) = (α̂ ∗ β̂ − β̂ ∗ α̂), (4)

cannot be reduced to the matrix commutator of the gen-
erators of the Lie algebra due to the non-commutativity of
the space-time. They have to be in the enveloping algebra

α̂ = α+ α1
ab : T aT b : +...+ αn−1

a1...an
: T a1 ...T an : +... (5)

where : T a1 ...T an : is totally symmetric under exchange of
the ai. This poses a difficulty in constructing non-abelian
SU(N) gauge theories [3]. Seiberg and Witten have shown
[5] that the fields defined in non-commutative coordinates
can be mapped on to the ordinary fields, the Seiberg–
Witten mapping. In [6] it was shown that this mapping
actually can be applied to the “∗” product with any gauge
groups. It is possible to study non-abelian gauge group
theories. Using the above enveloping algebra, one can ob-
tain the non-commutative fields in terms of the ordinary
fields with corrections in powers of the non-commutative
parameter, θµν , order by order. To the first order in θµν ,
non-commutative fields can be expressed by

α̂ = α+
1
4
θµν{∂µα,Aν} + cθµν [∂µα,Aν ],

Aµ = −1
4
θαβ{Aα, ∂βAµ + Fβµ}

+cθαβ([Aα, ∂µAβ ] + i[AαAβ , Aµ]), (6)

φ̂ = aθµνFµνφ− 1
2
θµνAµ∂νφ+ i

(
1
4

+ c

)
θµνAµAνφ,

where Fµν = ∂µAν − ∂νAµ − igN [Aµ, Aν ]. The term pro-
portional to a can be absorbed into the redefinition of the
matter field φ. The parameter c cannot be removed by a
redefinition of the gauge field. It must be a purely imagi-
nary number from the requirement that the gauge field be
self-conjugate. Using the above non-commutative fields,
one can construct a gauge theory for the SU(N) group.
The action S of a SU(N) NCQFT, to the leading order
in θ, is given by [6,7]

S =
∫
Ld4x,

L = −1
2
Tr(FµνF

µν)

+
1
4
gNθ

µνTr(FµνFρσF
ρσ − 4FµρFνσF

ρσ)

+φ̄(iγµDµ −m)φ− 1
4
θαβφ̄Fαβ(iγµDµ −m)φ

−1
2
θαβφ̄γµFµαiDβφ, (7)

where Dµ = ∂µ − igNT
aAa

µ. We note that the parameter
c does not appear in the Lagrangian. The Lagrangian is
uniquely determined to order θ. We will therefore work
with the simple choice c = 0 from now on. In the above,
if φ is a chiral field, m = 0. To obtain a theory which
can describe the strong and electroweak interactions such
as the standard model (SM), one also needs to solve the
U(1) charge quantization problem, namely the existence of
only three possible values, 1, 0, −1, for the U(1) charges,

as mentioned earlier. It has been shown that this difficulty
can also be overcome with the use of the Seiberg–Witten
mapping [5]. To solve the U(1) charge quantization prob-
lem, one associates with each charge gq(n) of the nth mat-
ter field a gauge field Â

(n)
µ [8]. In the commutative limit,

θµν → 0, Â(n)
µ becomes the single gauge field Aµ of the

ordinary commuting space-time U(1) gauge theory. But
at non-zero orders in θµν , Â(n)

µ receives corrections [8].
In doing so, the kinetic energy of the gauge boson will,

however, be affected. Depending on how the kinetic energy
is defined (weight over different field strengths of Â(n)

µ ),
the resulting kinetic energy will be different, even though
the proper normalization to obtain the correct kinetic en-
ergy in the commutative limit is imposed [8]. In the SM
there are six different matter field multiplets for each gen-
eration, i.e. uR, dR, (u, d)L, eR, (ν, e)L and (H0, H−); a
priori one can choose a different gi for each of them. After
identifying the three combinations with the usual g3, g2
and g1 couplings for the SM gauge groups, there is still
a freedom to choose different gauge boson self-interaction
couplings at non-zero orders in θµν . This leads to ambi-
guities in the self-interactions of the gauge bosons when
non-zero order terms in θµν are included [8]. This prob-
lem needs to be resolved. A way to solve this problem
is to have a theory without the use of the U(1) factor
group. There are many groups without U(1) factor group
which contain the SM gauge group and may be used to
describe the strong and electroweak interactions. However
not all of them can be easily extended to a full NCQFT
using the formulation described above. For example one
can easily obtain unique gauge boson self-interactions in
SU(5) theory [9]. But the matter fields require more than
one representations 5 and 10 which causes additional com-
plications [10] and will reintroduce the uniqueness prob-
lem for the kinetic energy. One way of obtaining a consis-
tent NCQFT is to have a theory in which all matter and
Higgs fields are in the same representation such that once
the Seiberg–Witten mapping is used to solve the prob-
lem of gauging a SU(N) group, there is no problem with
the unique determination of the kinetic energy. To this
end we propose to use the trinification gauge group [15],
SU(3)C×SU(3)L×SU(3)R, with a Z3 symmetry. This the-
ory leads to the unification of the strong and electroweak
interactions. An important feature of this theory is that
the matter and Higgs fields are assigned to (anti-) fun-
damental representations of the factor SU(3) groups and
therefore the formalism described earlier can be readily
used. In the trinification model, the gauge fields are in the
adjoint representation,

24 = AC +AL +AR = (8, 1, 1) + (1, 8, 1) + (1, 1, 8), (8)

which contains 24 gauge bosons. AC contains the color
gluon bosons, a linear combination of component fields of
AL and AR forms the U(1)Y gauge boson, and AL contains
the SU(2)L gauge bosons. The rest are integrally charged
heavy gauge bosons which do not mediate proton decays
[15]. Each generation of fermions is assigned to a 27,
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ψ = ψLR + ψRC + ψCL

= (1, 3, 3̄) + (3̄, 1, 3) + (3, 3̄, 1),

ψLR =


E0 E− e−

E+ Ē0 ν

e+ N1 N2


 , ψRC =


 ū1 ū2 ū3

d̄1 d̄2 d̄3

B̄2 B̄2 B̄2


 ,

ψCL =


u1 d1 B1

u2 d2 B2

u3 d3 B3


 . (9)

In the above we have written the fermions in left-handed
chiral fields. The B field is a heavy particle. The Higgs
fields which break the trinification to the SM gauge group
are also assigned to the 27 representations. In order to
have correct mass patterns, at least two 27 Higgs repre-
sentations are needed [15]. We indicate them by

φi = φLR
i + φRC

i + φCL
i

= (1, 3, 3̄)i + (3̄, 1, 3)i + (3, 3̄, 1)i. (10)

The Z3 symmetry operates in the following way. If
(C,L,R) is a representation under SU(3)C × SU(3)L ×
SU(3)R, the effect of Z3 is to symmetrize it to

Z3(C,L,R) = (C,L,R) + (RCL) + (L,R, C). (11)

The requirement of the Lagrangian to be invariant under
Z3 relates the gauge couplings gC,L,R of the gauge groups
and makes them equal, gC = gL = gR = gU , at a scale
which is the unification scale of the model. The vacuum ex-
pectation values of the Higgs scalars break the symmetry
to SU(3)C × SU(2)L × U(1)Y ; this leads to the following
form:

〈φLR
1 〉 =


 0̂ 0 0

0 0̂ 0
0 0 v1


 , 〈φLR

2 〉 =


 0̂ 0 0

0 0̂ 0̂
0 v2 0̂


 . (12)

Non-zero values of v1,2 break the symmetry to the SM
group. The scale of v1,2 are at the unification scale. At
this stage 12 of the gauge bosons, and B, Ei and Ni par-
ticles receive masses. They are therefore very heavy. The
entries indicated by 0̂ can develop VEVs of order mW .
These VEVs break the SM group to SU(3)C × U(1)em
and provide masses for the ordinary quarks and leptons.
In this model sin2 θW = 3/8 at the unification scale. Using
the present electroweak precision test data for sin2 θW, αs
and αem at the Z mass pole, the unification scale is de-
termined to be 1014 GeV [16]. A unification scale as low
as 1014 GeV in a SU(5) theory, for example, would in-
duce rapid proton decays and is ruled out. However, as
has been mentioned previously, in the trinification theory
gauge bosons do not mediate proton decays. Therefore the
theory would not have the problem with proton decays.
Mediation of heavy Higgs particles can produce proton
decays [15]. However in this case, there are many free pa-
rameters in the Yukawa and the Higgs potential couplings
to make the theory consistent with the data [15]. It is clear
that the trinification model can provide an easy framework

for building a phenomenologically acceptable and consis-
tent NCQFT model for the strong and electroweak inter-
actions. To the first order in θµν , the non-commutative
gauge fields are of the same form for the gauge fields as in
(6). The fermion and Higgs fields are in the same represen-
tation and are all (anti-) fundamental representations φ of
the type (3, 3̄) under the subgroups SU(3) × SU(3). The
non-commutative fields expressed in the ordinary fields
are given by

φ̂ = φ− 1
2
θµν (13)

×
(
Aµ∂νφ− i

2
AµAνφ+ ∂νφA

′
µ +

i
2
φA′

νA
′
µ

)
,

where Aµ and A′
µ are the gauge fields of the first SU(3)

and the second SU(3) gauge groups, respectively. The cor-
rections to the Lagrangian L̃ of first order in θµν for the
gauge and fermion kinetic energy terms are given by

L̃ =

[
1
4
gCθµνTr

(
FC

µνF
C
αβF

Cαβ − 4FC
αµF

C
βνF

Cαβ
)

+(C → L) + (C → R)

]

−
[

i
4
θµνTr

(
ψ̄LRFL

µνγ
αDαψ

LR + FR
µνψ̄

LRγαDαψ
LR

+2ψ̄LRFL
αµγ

αDνψ
LR + 2FR

αµψ̄
LRγαDνψ

LR)
+(LR → LC) + (LR → CR)

]
, (14)

where Dµψ
LR = ∂µψ

LR − igLAL
µψ

LR + igRφLRAR
µ . The

above Lagrangian uniquely determines the interactions
due to the non-commutative space-time correction to the
first order in θµν without the problems pointed out earlier.
We emphasize that although the resulting theory at low
energies appears to have U(1) factor group(s), the corre-
sponding gauge self-interactions are fixed because of the
choice of the trinification group which dictates how gauge
bosons interact. From the above Lagrangian one can easily
study new interactions due to a non-commutative space-
time and test the model by experimental data. For illustra-
tion, we present the neutral gauge boson self-interactions
and its interactions with the SM fermions. Expanding the
above Lagrangian we obtain

Lint =
1
4
gCθµνTr

(
GµνGαβG

αβ − 4GαµGβνG
αβ

)
+

1
16
θµνgY

×
[
cW

(
7
15
c2W + s2W

) (
FµνFαβF

αβ − 4FαµFβνF
αβ

)

− sW

(
7
15
s2W + c2W

) (
ZµνZαβZ

αβ − 4ZαµZβνZ
αβ

)
+ cW

(
c2W − 23

15
s2W

) (
FµνZαβZ

αβ + 2ZµνZαβF
αβ
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− 4
(
ZαµZβνF

αβ + 2FαµZβνZ
αβ

))
− sW

(
s2W − 23

15
c2W

) (
ZµνFαβF

αβ + 2FµνZαβF
αβ

− 4(FαµFβνZ
αβ + 2ZαµFβνF

αβ)
) ]
, (15)

where cW = cos θW, sW = sin θW. Gµν , Fµν , Zµν =
∂µZν − ∂νZµ are the field strengths for the gluon, photon
and Z particles, respectively. Note that the above inter-
actions are obtained at the unification scale where gY =√

3/5gU and sin2 θW = 3/8, and gC = gL = gR = gU .
From the above we see that the triple neutral gauge bo-
son interactions are uniquely determined unlike the case
with the SM gauge group studied in [8]. These interac-
tions are also different from those predicted by the SU(5)
model [9]. This can be used to test the model [11]. The
fermion–gauge boson interactions can readily be obtained
by expanding (14). The Yukawa coupling terms and Higgs
potential terms can also be obtained using the results in
(6) and (13). We have constructed a NCQFT unification
model of the strong and electroweak interactions based
on the SU(3)C × SU(3)L × SU(3)R × Z3 group. In this
model all interactions are determined. New gauge boson
self- and fermion–gauge interactions are predicted. If the
non-commutative scale turns out to be low, the model can
be tested experimentally. This model provides an example
which can consistently describe the strong and electroweak
interactions and their unification, and allows a systematic
investigation of the hypothesis of non-commutative space-
time to be made.

Before closing we would like to make two comments
on some possible extensions of the model discussed here.
One of them concerns the E6 extension of the model.
The SU(3)C × SU(3)L × SU(3)R group can be embed-
ded into the E6 group. One therefore can try to construct
a NCQFT based on E6. With this group the gauge bosons
are in the 78 adjoint representation and the fermions and
Higgs bosons are in the 27 fundamental representations
[12]. A NCQFT model can be constructed following the
procedures discussed earlier. This model is very similar to
the trinification model with the advantage that no addi-
tional Z3 symmetry is needed. There are however differ-
ences and complications. In addition to the gauge bosons
in the trinification model, there are also 54 colored gauge
bosons. These particles mediate proton decays. Therefore
they have to be made heavy. To achieve this more Higgs
representations will have to be introduced which compli-
cate the theory [12]. The trinification model is simpler in
terms of particle contents.

The other comment concerns another approach to con-
struct the trinification model with non-commutative
space-time without the use of the Seiberg–Witten map-
ping adopted in [13]. In this approach one first constructs
fields in U(N) product groups and then breaks the symme-
try spontaneously to the SU(N) product group. For the
trinification model, one can extend the group to U(3)C ×
U(3)L × U(3)R. The gauge field representation is

27 = (9, 1, 1) + (1, 9, 1) + (1, 1, 9).

In [13] the symmetry breaking of U(N) to SU(N) is as-
sumed to be achieved by non-zero VEVs of representations
Si which transform as singlets under the SU(N) but with
non-zero charge for the U(1) subgroup of U(N). Follow-
ing [13] one can introduce three Si fields for each of the
factor U(N) groups. The VEVs of these fields break the
group to the trinification group discussed earlier, produc-
ing three heavy gauge bosons. However it has been shown
that models based on such an approach violate unitarity
[17]. This approach may not lead to a realistic model.
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Note added. Another consistent non-commutative grand uni-
fied model based on SO(10) has been constructed by Aschieri
et al. (hep-th/0205214), three months after this work.
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